Organosolv Wheat Straw Lignin as a Phenol Substitute for Green Phenolic Resins
نویسندگان
چکیده
Organosolv wheat straw lignin extracted using the CIMV process is a linear, low molecular weight, and natural phenolic oligomer. In this study, organosolv wheat straw lignin was tested as a substitute for 50% to 70% of the phenol in a phenol-formaldehyde-resol resin. The lignin was used without any chemical modification in a one-step synthesis reaction. Parameters such as reaction time and formaldehyde-to-phenol sources (phenol + lignin) mass ratios were optimized to achieve the requirements for industrial wood adhesives in terms of pH, viscosity, and dry matter. For the first time, the formaldehyde ratio was studied in order to reduce resin residual free formaldehyde below 1%. Lignin-phenol-formaldehyde resins were successfully synthesized up to a phenol substitution rate of 70% and showed physico-chemical properties close to standard phenolformaldehyde resins. The thermo-mechanical properties analyzed in dynamic load thermo mechanical analysis were similar to those of the reference resins. Plywood panels manufactured using these lignin-based resins reached the specifications for industrial panels according to the French standard for exterior plywood panels. Moreover, the formaldehyde content of these plywoods was low enough to satisfy even the most rigorous legislation.
منابع مشابه
Demethylation of Wheat Straw Alkali Lignin for Application in Phenol Formaldehyde Adhesives
Lignin is a natural biopolymer with a complex three-dimensional network. It is the second most abundant natural polymer on earth. Commercially, lignin is largely obtained from the waste liquors of pulping and bioethanol productions. In this study, wheat straw alkali lignin (WSAL) was demethylated by using an in-situ generated Lewis acid under an optimized demethylation process. The demethylatio...
متن کاملComparative Analysis of Pyrolysis Products from a Variety of Herbaceous Canadian Crop Residues
Interest in recovering and valorizing agricultural biomass residues has increased in recent years in response to emerging economic opportunities and the potential for more sustainable use of renewable and nonrenewable resources. Agricultural crop residues are a major source of lignocellulose, with considerable potential for use as a renewable resource and lignin’s polyphenolic structure makes i...
متن کاملDevelopment and characterization of an environmentally friendly process sequence (autohydrolysis and organosolv) for wheat straw delignification.
The present work describes the delignification of wheat straw through an environmentally friendly process resulting from sequential application of autohydrolysis and organosolv processes. Wheat straw autohydrolysis was performed at 180°C during 30 min with a liquid-solid ratio of 10 (v/w); under these conditions, a solubilization of 44% of the original xylan, with 78% of sugars as xylooligosacc...
متن کاملOxidative polymerization of lignins by laccase in water-acetone mixture.
The enzymatic oxidative polymerization of five technical lignins with different molecular properties, i.e. Soda Grass/Wheat straw Lignin, Organosolv Hardwood Lignin, Soda Wheat straw Lignin, Alkali pretreated Wheat straw Lignin, and Kraft Softwood was studied. All lignins were previously fractionated by acetone/water 50:50 (v/v) and the laccase-catalyzed polymerization of the low molecular weig...
متن کاملMethods to Improve Lignin’s Reactivity as a Phenol Substitute and as Replacement for Other Phenolic Compounds: a Brief Review
Lignin is readily available as a by-product from the pulp and paper industry. It is considered to be a promising substitute for phenol in phenol-formaldehyde (PF) resin synthesis, given the increasing concerns of the shortage of fossil resources and the environmental impact from petroleum-based products. One hurdle that prevents the commercial utilization of lignin is its low reactivity due to ...
متن کامل